Synaptome of a Memory

2015 Scientific Innovations Award
Kristen Harris, Ph.D.
University of Texas – Austin

A longstanding question in neuroscience concerns the cellular mechanisms of learning and memory. Since synapses were first discovered as the sites of communication between neurons, scientists have thought that changes in their number or structure would be a likely substrate of memory. Although evidence has accumulated, proof of this hypothesis has been elusive. Addressing this question requires substantial improvement in understanding how the brain is wired, namely, the “connectome”. Ultimately, the connectome will contain a map of the location and type of every synapse in the brain. The synaptome of a memory, sensation, or behavior is quite different from the connectome of a brain region because these experiences likely involve a subset of synapses distributed across different brain regions. Hence, to understand mechanisms, it is necessary to know which specific synapses were involved. Detecting synapses and their subcellular components requires the nanoscale resolution of serial section electron microscopy, an approach that has been pioneered in my laboratory. Dr. Harris’ lab proposes new strategies that will for the first time, provide specific identification of the progression and ultrastructural consequences of activity-dependent synapse remodeling in a cellular mechanism of learning and memory, a crucial first step in defining the synaptome of a memory. Nothing like this has ever been done before and the findings are crucial not only to understand the basic neuroscience and development of learning and memory, but also to illuminate synaptic dysfunction in prominent disease states, such as autism and Alzheimer’s disease.

Other Awards

Dr. Doris Tsao, University of California, Berkeley
Understanding how psychedelics affect top-down belief propagation in the primate brain
Dr. Doris Tsao, University of California, Berkeley Our research will try to understand how special substances called psychedelics can help the brain see the world differently. When people are sad…
Robert Froemke Ph.D. NYU School of Medicine
The Neuroscience of Families: Social Behavior in Naturalistic Controlled Environments
Robert FroemkePh.D.NYU School of Medicine Animals can work together in groups to achieve specific aims with higher success rates than if acting alone. For communally-living and consociating species such as…
Ken Prehoda, Ph.D. University of Oregon
Brain Regeneration Dynamics Using the Transparent Fish Danionella Cerebrum
2025 Scientific Innovations AwardKen Prehoda, Ph.D.University of Oregon Regenerative medicine may one day enable us to repair brain damage caused by injury and disease. While humans and other mammals cannot…
James J DiCarlo, M.D., Ph.D., Massachusetts Institute of Technology
Using Computer Models of the Neural Mechanisms of Visual Processing to Non-Invasively Modulate Brain States
DiCarlo’s research team is exploring an innovative approach to address emotional challenges, such as anxiety and depression. Traditional treatments for these disorders can be complex and often cause unpleasant side effects,…