Interrogating Experience-Induced Gene Regulatory Network Dynamics in Interneurons

2018 Scientific Innovations Award
Xinyu Zhao, Ph.D.
University of Wisconsin, Madison

Understanding the complex relationships between gene expression, neuronal plasticity, and behavior is a fundamental goal of neuroscience. However the brain contains many types of neurons. Therefore, a systematic understanding of brain function must include an effective strategy for targeting specific populations of neurons. In addition, cellular function requires coordinated action of large numbers of interacting genes. Therefore, a systematic approach must examine the gene regulatory networks that drive these expression changes. This application represents Dr. Zhao’s first steps to tackle these challenges by both utilizing state-of-art genomic tools and innovative computational methods to identify cell type-specific gene regulatory networks that mediate experience-induced behavioral changes. Dr. Zhao’s lab will focus on a type of neuron called interneurons. Although interneurons constitute only less than 20% of total neurons in the brain, they are critical in controlling the activities of many other neurons. It has been shown that these interneurons have critical roles in sensory processing, attention, working memory, and cognition, and they are altered in several psychiatric disorders, including schizophrenia, bipolar disorders, and autism. In this project, they will determine whether experience mobilizes networks of genes in specific subtypes of interneurons in the adult brains.

Other Awards

Dr. Doris Tsao, University of California, Berkeley
Understanding how psychedelics affect top-down belief propagation in the primate brain
Dr. Doris Tsao, University of California, Berkeley Our research will try to understand how special substances called psychedelics can help the brain see the world differently. When people are sad…
Robert Froemke Ph.D. NYU School of Medicine
The Neuroscience of Families: Social Behavior in Naturalistic Controlled Environments
Robert FroemkePh.D.NYU School of Medicine Animals can work together in groups to achieve specific aims with higher success rates than if acting alone. For communally-living and consociating species such as…
Ken Prehoda, Ph.D. University of Oregon
Brain Regeneration Dynamics Using the Transparent Fish Danionella Cerebrum
2025 Scientific Innovations AwardKen Prehoda, Ph.D.University of Oregon Regenerative medicine may one day enable us to repair brain damage caused by injury and disease. While humans and other mammals cannot…
James J DiCarlo, M.D., Ph.D., Massachusetts Institute of Technology
Using Computer Models of the Neural Mechanisms of Visual Processing to Non-Invasively Modulate Brain States
DiCarlo’s research team is exploring an innovative approach to address emotional challenges, such as anxiety and depression. Traditional treatments for these disorders can be complex and often cause unpleasant side effects,…