Disruption of the Shank3 gene in a primate model for studying ASD

2015 Scientific Innovations Award
Guoping Feng, Ph.D.
Massachusetts Institute of Technology

Brain disorders represent a great societal burden but are among the least understood of all diseases; for psychiatric disorders in particular, the underlying pathologies are largely unknown and treatment is mostly ineffective. Many brain disorders have a genetic component, and advances in genomic technologies have led to the identification of many risk genes. Understanding how risk genes may cause or contribute to the pathogenesis of psychiatric disorders requires studies of brain function in animal models with genetic alterations that mimic those of human patients. Current animal model studies are largely focused on mice, but mice are imperfect models for many aspects of human biology, particularly neuroscience, given the vast differences in brain and behavior between the two species. The difficulty of modeling complex brain functions and behaviors in mice is an important obstacle both to basic research and to the development of new treatments for human brain disorders. Thus, there is an urgent need to develop animal models that are more close humans in the brain structure and function. In this application, Dr. Feng’s lab propose to generate a marmoset (a small primate) model of autism by disrupting the Shank3 gene, which causes autism when mutated in humans. They will use this primate model to further our understanding of neurobiological basis of autism related behaviors. These studies may lead to the identification of novel disease mechanisms and neurobiological targets for drug development for ASD. More generally, the proposed project, if successful, will establish the marmoset as a primate genetic model for the study of psychiatric disorders.

Other Awards

Dr. Doris Tsao, University of California, Berkeley
Understanding how psychedelics affect top-down belief propagation in the primate brain
Dr. Doris Tsao, University of California, Berkeley Our research will try to understand how special substances called psychedelics can help the brain see the world differently. When people are sad…
Robert Froemke Ph.D. NYU School of Medicine
The Neuroscience of Families: Social Behavior in Naturalistic Controlled Environments
Robert FroemkePh.D.NYU School of Medicine Animals can work together in groups to achieve specific aims with higher success rates than if acting alone. For communally-living and consociating species such as…
Ken Prehoda, Ph.D. University of Oregon
Brain Regeneration Dynamics Using the Transparent Fish Danionella Cerebrum
2025 Scientific Innovations AwardKen Prehoda, Ph.D.University of Oregon Regenerative medicine may one day enable us to repair brain damage caused by injury and disease. While humans and other mammals cannot…
James J DiCarlo, M.D., Ph.D., Massachusetts Institute of Technology
Using Computer Models of the Neural Mechanisms of Visual Processing to Non-Invasively Modulate Brain States
DiCarlo’s research team is exploring an innovative approach to address emotional challenges, such as anxiety and depression. Traditional treatments for these disorders can be complex and often cause unpleasant side effects,…