Neural Circuit Mechanisms of Behavior-Dependent Representation for Space and Time

2018 Seed Grant
Takashi Kitamura, Ph.D.
University of Texas Southwestern Medical Center

The central question in my proposal is whether our perception of time and space share the same circuit mechanisms during our daily life. Recent studies suggest that neurons in the medial entorhinal cortex (MEC) can represent either travel distance or elapsed time in a behaviorally-dependent fashion. The results suggest that the MEC may flexibly represent only behaviorally-relevant spatiotemporal dimensions in an information-compressed manner. However, how the brain optimizes spatiotemporal metrics under different behavioral contexts is still unclear. To address this question, I will examine neural circuit mechanisms for the behavior-dependent optimization of the brain’s spatiotemporal metrics by using mouse circuit genetics and cell-type specific activity monitoring/manipulating analysis of the MEC circuits, which would lead to the biophysically-­based mechanistic understanding of brain function for the animal’s perception of time and space.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…