Dr. Martha K. McClintock, Professor of Psychology and Director of the Institute for Mind and Biology, was the first researcher to provide scientific evidence of human pheromones and their role in menstrual synchronization among women. Currently, her studies focus on the interactions between behavior and reproductive endocrinology. The fundamental importance of human social behavior to mental and physical health necessitates a thorough understanding of its neurological mechanisms. Dr. McClintock has examined the impact of androstadienone (AND), a putative human pheromone found in male sweat, tears, and skin, on mood, social cognition, and visual processing, thereby acting as a social chemical signal among people without being consciously detected as an odor.

Her studies illustrated a difference in mood between AND- and control-treated individuals. Either AND in a clove oil solution or the solution alone was applied under the nose of participants. After several minutes, the subjects were then directed to fill out mood scales. With AND, women experienced an increase in positive-stimulated mood, when compared to control. Men, on the other hand, a more negative response with the presence of AND.

AND may specifically improve social cognition. When AND is present, both women and men could more quickly identify, under conditions of high cognitive or negative emotional load, human presence in a picture (figure1), AND also shows effect on visual cortex. Preliminary fMRI data revealed an enhanced activity in visual areas in an AND condition during a simple visual task (figure 2). This data suggests that AND can modulate neural activity following distinct rapid events.

Further fMRI studies will determine which brain circuits are affected by these social chemical: emotional processing, social cognition, or overall attention. Such information will benefit the study of emotions, social thought and behavior, and may provide a new avenue for viewing and treating social deficits (social phobia, autism, etc.).
The past few months have been very busy in the Brain Research Foundation office. We have been gearing up for our gala scheduled for September 27, 2007. This year, we will be setting sail on Odyssey Cruises. It should be a fabulous time, so I hope you will mark your calendars now.

It's that time of year again when the Brain Research Foundation awards seed grants to neuroscientists. The fundamental notion of seed granting is to provide start-up money for innovative projects that have the potential of obtaining funding from additional outside sources. This program is one of the most important and productive funding initiatives the Brain Research Foundation conducts. Established at the request of the Fellows of the Brain Research Institute at the University of Chicago, this fund is named for BRF founders William E. Fay, Jr. and Clifton E. Frank.

This is an investment in scientific promise that pays off every year. Past recipients have been able to generate preliminary data that is published in top scientific journals, and most importantly, this data has enabled them to attract future grants (see 2006 Seed Grant Facts on page 3). I hope you take a few minutes to read the article that illustrates some of the exciting experiments the 2007 BRF Seed Grant recipients will be performing to bring us closer to finding a cure for a variety of brain disorders.

In addition to the day to day workings of the office, we have been occupied by organizing an office move. The Executive Committee of the Brain Research Foundation has decided to relocate the BRF office from Hyde Park back to downtown Chicago. It was interesting to be near the science, but by moving our location downtown, we feel that it will be more accessible to our board and our donors.

If you are in the neighborhood, please stop by to see our new office.

Sincerely,

Terre A. Sharma, Ph.D.
Executive Director

Please make a note of our new address:

Brain Research Foundation
111 West Washington Street
Suite 1710
Chicago, Illinois 60602

Phone (312) 759-5150
Fax (312) 759-5151
Seed Grants: Growing Discovery

For the past twenty-seven years, the Brain Research Foundation has been supporting neuroscientists through our annual Fay/Frank Seed Grant Program. These small seed grants are given to researchers to further explore their innovative ideas and promising investigative leads. The Brain Research Foundation makes this meaningful investment each year and each year the impact is remarkable.

In April, the Seed Grant Allocation Committee, comprised of senior scientists from the Brain Research Institute and members of the Brain Research Foundation, met to allocate $400,000 to 16 fellows of the University of Chicago’s Brain Research Institute. Following are three summaries of the 2007 Seed Grant projects:

The incidence of autistic spectrum disorders has recently been estimated to be as high as one out of every 166 births. It has become generally accepted that autism, in its various forms, represents a genetic and developmental, rather than a psychological, disorder. While some recent progress has been made in the identification of autism susceptibility genes, very little is known about the functions of these genes during embryonic and neonatal development of the nervous system.

Dr. Robert Ho, Department of Organismal Biology and Anatomy, plans to investigate the role of a functional variant of the oncogene MET that was found to be associated within families in which two or more siblings have been diagnosed with autism. Dr. Ho hypothesizes that MET plays a role in the correct migratory behavior of neuronal precursor cells. By understanding the immediate cellular functions of the MET pathway and correlating these functions to large-scale changes in brain architecture, Dr. Ho hopes to determine if changes in MET pathway can lead to changes in the development of specific brain structures which might contribute to the autistic phenotype. The goal is to contribute to an understanding of how autism can be better diagnosed and prevented.

Devic’s disease is a devastating disease of the brain and the spinal cord that causes recurrent bouts of intense inflammation of the visual pathways and spinal cord, resulting in blindness and paralysis. Devic’s disease is often thought of as a variant form of multiple sclerosis (MS), and is often treated with the same drugs used for treating MS. However, patients generally do not respond to such treatment. There is some data suggesting that Devic’s disease is more similar to diseases such as lupus and a lupus-like condition called Sjögren’s disease.

Dr. Adil Javed, Department of Neurology, plans to characterize the relationship between Devic’s disease and Sjögren’s disease, using histological and molecular methods. If this study demonstrates a relationship between these diseases, then Devic’s disease may be viewed as a form of Sjögren’s disease, not a form of MS. Correct diagnosis of this condition will lead to early and appropriate drug treatment. More importantly, this would translate into better recovery for the patients and less healthcare costs.
Alzheimer’s disease, the major cause of dementia in the elderly, affects over 5 million Americans. It is estimated that this devastating disorder strikes someone in America every 72 seconds. Unless an effective treatment or a cure is discovered, it is estimated that 7.7 million Americans will have the disease by 2030, and the numbers could climb to as high as 16 million by 2050. There is a pressing need to develop new therapies for Alzheimer’s disease.

Dr. Gopal Thinakaran, Department of Neurobiology, will focus on a protein that is mutated in early-onset Alzheimer’s disease, Presenilin 1. Dr. Thinakaran’s research proposal involves the characterization of mice where human Alzheimer’s disease causing mutation has been introduced into mouse Presenilin 1 protein. His hypothesis is that Alzheimer’s disease causing mutations in Presenilin 1 lead to cognitive problems by affecting the basic synaptic machinery, especially the remodeling of synaptic connectivity in the neuronal network, which is critical for the dynamic process of learning and memory. Dr. Thinakaran’s studies will provide important information to advance treatment for Alzheimer’s disease.

2006 BRF Seed Grant Program Facts:

- Since the Program’s inception, BRF has distributed over $6.9M to neuroscientists.
- To date, every $1 BRF has invested in these new ideas has attracted $21 in future funding. (Many proposals are still pending.)
- 87% of awardees have applied for additional external funding, utilizing data generated from a BRF Seed Grant.
- 40% have already published articles with data generated from BRF Seed Grant funds.
Remembering Margaret “Mike” Mullins Frank
By William E. Fay, Jr.

Dear Mike was a long-term devoted friend of many. Marg and I became close to Mike when the Mullins and Frank families got together. As you know, it was quite a gang. Our children grew up with all of them.

Mike inherited a Heisman Trophy “fast track”—with a highly successful, highly motivated husband. She became the anchor for the whole family—always available, always trying, always loving—always as pretty as a picture. And I guess what I admired most about her was her wonderful, sustaining sense of humor. Her lightheartedness always prevailed.

Clint was for a large part of my life my best friend—a friendship born of the fact that we each had a handicapped daughter. That brought us together in an effort to make something significant of the Brain Research Foundation. So Mike and Marg and Clint and I had a few decades together of experiencing successes and failures—with laughter and tears. Mike remained a Trustee and a loyal benefactor till the end.

Margaret Mullins Frank (1922-2007)
Margaret “Mike” Frank, wife of the late Clinton E. Frank, passed away on February 26, 2007. Mrs. Frank touched the lives of so many people. She was an honorary trustee of the Brain Research Foundation and a member of the Women’s Council of the Brain Research Foundation. She was 84.

in the spotlight

New BRF Trustee: Suzanne M. Kopp
Suzanne Kopp became involved with the Women’s Council of the Brain Research Foundation in 2003. In 2005, she was voted in as Vice-President of the Women’s Council. In 2006, Suzanne was elected to the Board of the Brain Research Foundation.

Suzanne’s desire to become involved with the Brain Research Foundation resulted from the loss of her husband, Michael Shapiro, at the age of 35, from a debilitating and rare neurological condition known as Rosai-Dorfman. Following Michael’s death, Suzanne also made the decision to become more actively involved in supporting the neurosciences and to work to secure a role as an advocate for patients.

At the time of Michael’s death, Suzanne was Regional Corporate Counsel for a large international company, within one year of his passing, she became committed to making a career change to honor the memory of her husband and to touch the lives of those facing medical crisis. Initially, Suzanne worked as a fund-raiser in the Medical Center Development Office at The University of Chicago, covering the neurosciences. Her passion, however, was to develop a patient navigation program to provide efficient access to The University of Chicago Medical Center. This program launched in January 2005 under The Program for Executive Health at The University of Chicago Medical Center. In February 2006, Suzanne became the Director of the Program for Executive Health.

Suzanne remains dedicated to helping others, both through her professional career and her work with foundations like the Brain Research Foundation.
Women’s Council Seed Grant Update

Women’s Council of the Brain Research Foundation continues its support of the neurosciences. Most recently, they have been awarding an annual Women’s Council Seed Grants in the amount of $25,000 to deserving female researchers. These seed grants provide start-up monies for innovative projects that have the potential of obtaining government funding or other outside sources. This year’s seed grant recipient is Dr. Elena Rozhkova with her project “Advanced Bio-inorganic Materials for Targeted Thermal and Photodynamic Glioblastoma Multiforme Therapy.”

Glioblastoma multiforme (GBM) is the most aggressive form of primary brain tumors known collectively as gliomas. These tumors arise from glial cells of the brain during childhood and in adults. These growths do not spread throughout the body like other forms of cancer, but cause symptoms by invading the brain. Patients treated with current optimal therapy, including surgical resection, radiation therapy, and chemotherapy, have a median survival of approximately twelve months.

Dr. Rozhkova’s proposal focuses on new strategies for GBM therapy. The goal is to design, synthesize and test the feasibility of nano-sized magnetic materials on the destruction of cancer cells. It is anticipated that with the completion of the proposed research, Dr. Rozhkova will produce evidence that these novel nanoparticles are clinically applicable and may provide much needed treatment for patients suffering with GBM.

If you would like more information or would like to donate to the Women’s Council Seed Grant Fund, please call the Brain Research Foundation at (312) 759-5150.